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A mathematical model describing the coupling between two independent amplification mechanisms in au-
ditory hair cells is proposed and analyzed. Hair cells are cells in the inner ear responsible for translating
sound-induced mechanical stimuli into an electrical signal that can then be recorded by the auditory nerve. In
nonmammals, two separate mechanisms have been postulated to contribute to the amplification and tuning
properties of the hair cells. Models of each of these mechanisms have been shown to be poised near a Hopf
bifurcation. Through a weakly nonlinear analysis that assumes weak periodic forcing, weak damping, and weak
coupling, the physiologically based models of the two mechanisms are reduced to a system of two coupled
amplitude equations describing the resonant response. The predictions that follow from an analysis of the
reduced equations, as well as performance benefits due to the coupling of the two mechanisms, are discussed
and compared with published experimental auditory nerve data.
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I. INTRODUCTION

The natural environment presents the auditory system
with the challenge of responding to sounds over many orders
of magnitude; the threshold of hearing and the threshold of
pain differ by about thirteen orders of magnitude. For the ear
to discriminate between sounds over such a large dynamic
range, it is necessary for auditory stimuli to be compressed
into a much smaller, more achievable range of physical re-
sponses. This is accomplished through a nonlinear mecha-
nism in which small amplitude sounds are amplified to a
greater extent than larger amplitude sounds. In order to pro-
cess complex sound stimuli, it is also necessary for the au-
ditory system to distinguish between the frequency compo-
nents of the stimuli. The ear’s amplification and frequency
discrimination properties are thought to be derived from a
common, metabolically powered mechanism, the details of
which have been the topic of much investigation �1–3�.

In both mammals and nonmammals, hair cells of the inner
ear are responsible for translating sound-induced mechanical
stimuli into a neurotransmitter signal which induces the fir-
ing of the auditory nerve �4,5�. Each hair cell consists of a
cell body which is contacted from below by the auditory
nerve and a hair bundle consisting of actin-supported fibers.
When sound stimulates the auditory organ, the resulting mo-
tion of the hair bundle causes transduction channels to be
mechanically pulled open. Ionic current then enters the cell
body through the transduction channels, thereby depolarizing
the cell, and ultimately causing the release of neurotransmit-
ter at the auditory nerve synapse.

In mammals, the frequency-discrimination properties of
the basilar membrane, the membrane in which the hair cells
are embedded, contribute to the auditory system’s capacity to
distinguish between sounds of different frequencies. By con-
trast in nonmammals, the surface in which the hair cells are

embedded lacks tuning properties. The nonmammalian audi-
tory system is thought to achieve its frequency tuning prop-
erties through two different mechanisms, both intrinsic to the
hair cell. The first mechanism involves the mechanical mo-
tion of the hair bundle. Experiments indicate that the hair
bundle responds actively, with greater energy than provided
by the stimulus, if forced near its resonance frequency �6�.
Evidence for a second mechanism, referred to as electrical
resonance, is provided by the decaying oscillations that are
observed in the membrane potential of the cell body in re-
sponse to constant current injection �7�. These oscillations
indicate that the cell body possesses a preferred response
frequency.

Dynamical systems methods have proven useful in ana-
lyzing the frequency tuning and amplification properties of
physiologically based auditory models. Interestingly, models
of both the active motion of the hair bundle and the electrical
resonance mechanism have been shown to be poised near a
Hopf bifurcation �8,9�. A Hopf bifurcation is a robust mecha-
nism for generating spontaneous oscillations as a control pa-
rameter of a nonlinear system is varied. It occurs when a
static equilibrium loses stability via a complex conjugate pair
of eigenvalues �of the associated linear stability problem�
crossing the imaginary axis in the complex plane with non-
zero imaginary part. It has been suggested that the hair cell
critically tunes itself so that its parameters are poised just
below the bifurcation point, thereby making the cell sensitive
to stimuli at the Hopf bifurcation frequency, without causing
spontaneous oscillations �10,11�. These investigations deter-
mine the generic frequency tuning and amplification proper-
ties of a periodically forced system in the vicinity of a Hopf
bifurcation; specifically, they analyze the characteristics of
solutions that are frequency locked to a weak, additive reso-
nant forcing term. Sufficiently close to the Hopf bifurcation
point, the system is compressively nonlinear: small inputs
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are amplified to a greater extent than larger ones �10,11�.
Moreover, the compression of the dynamic range is accom-
panied by frequency tuning, which is sharper for small am-
plitude inputs than for larger amplitude signals.

Previous studies of hair cell amplification models have
considered the normal form for a system near a Hopf bifur-
cation without actually performing the normal form reduc-
tion from the physiologically relevant mathematical model.
Here, in Appendix B, we reduce the Hudspeth and Lewis
model of the electrical tuning mechanism �12,13� to the nor-
mal form for a system near a Hopf bifurcation, thereby de-
termining the numerical values of the coefficients of the nor-
mal form corresponding to the model and parameters used by
Hudspeth and Lewis. We find that the coefficient of the non-
linear term in the normal form has comparable real and
imaginary parts; it is not purely real as was assumed in ear-
lier investigations �10,11�. We show that a result of the non-
zero imaginary part is that the response of the system to
resonant forcing may be hysteretic and that the frequency
tuning curves are no longer symmetric about the resonance
frequency. We further propose a model that describes weak
coupling between the hair bundle amplification mechanism
and the electrical resonance mechanism. We assume that
both oscillation mechanisms are critically tuned to approxi-
mately the same resonant frequency and only weakly
damped so that the Hopf bifurcation normal form applies to
each independently, i.e., when the other mechanism is sup-
pressed. We then assume weak linear coupling of the mecha-
nisms, and direct forcing of the hair bundle at a frequency
that is close to its natural frequency. As in earlier investiga-
tions, the analysis focuses on the frequency-locked solutions
and, in particular, on how the magnitude of response grows
with the forcing. We find that the combined critically tuned
amplification system, can lead to a response R that scales
with F1/9, where F is the resonant forcing amplitude, thereby
leading to enhanced amplification R /F of small signals. We
also explore the enhanced frequency-tuning characteristics of
the combined mechanical and electrical amplification sys-
tem, comparing it with those associated with a single tuning
mechanism.

Our paper is organized as follows. In Sec. II we introduce
the reduced mathematical model, with the mathematical de-
tails of the reduction from the physiologically detailed mod-
els relegated to Appendix B. Section III contains our analysis
of the reduced model, focusing particularly on the simpler
situation of unidirectional coupling from the hair bundle tun-
ing mechanism to the electrical resonator. We present
response-versus-forcing curves that demonstrate the transi-
tion from a linear response �R�F� to a response R�F1/9 as
the amplitude of the �weak� signal increases. We also dem-
onstrate the sharper tuning that is possible with the combined
amplification system. Finally, Sec. IV compares our model
predictions with published experimental auditory nerve data.

II. MODEL

Two distinct mechanisms contribute to auditory tuning in
nonmammalian vertebrates: an “electrical” resonance arising
from an interplay between ionic currents through the cell

membrane and a “mechanical” resonance associated with the
active motion of the stereocilia in response to stimuli at their
resonance frequency. We start our discussion by focusing on
the electrical resonance mechanism. The underlying bio-
physical components have been discussed by Hudspeth and
Lewis �12,13�, who performed a set of experiments that care-
fully characterized the dynamical properties of the major ion
channels on the cell bodies of bullfrog saccular hair cells. On
the basis of these experiments, they developed a single com-
partment model of the hair cell �see Appendix A� using the
simplifying assumption that only two major active ion chan-
nels, a voltage-gated calcium channel and a calcium-gated
potassium channel, contribute to the cell’s dynamical behav-
ior. In this model, the dynamical evolution of the membrane
potential Vm is given by an equation based on the direct
application of Kirchoff’s laws to a circuit that represents the
flow of ions across the membrane

− Cm
dVm

dt
= gCam

3�Vm − ECa� + gK�Ca��O2 + O3��Vm − EK�

+ gL�Vm − EL� − I . �1�

Here Vm is the membrane potential and Cm is the membrane
capacitance per unit area. The voltage-gated calcium �Ca�
current is represented by gCam

3�Vm−ECa�, where gCa is the
maximum Ca conductance per unit area, m is the voltage-
dependent fraction of open conformational subunits in the Ca
channels, and ECa is the reversal potential for the Ca ion
channels. The Ca-gated potassium �K� current is represented
by gK�Ca��O2+O3��Vm−EK�, where gK�Ca� is the maximum K
conductance per unit area, �O2+O3� is the fraction of K
channels in one of their two open states, and EK is the rever-
sal potential for the K ion channels. The term gL�Vm−EL�
represents all passive ion channels as a leak conductance gL
per unit area and a reversal potential EL. The command cur-
rent I is directly injected into the cell body. The formulation
of the model involves six additional equations �see Appendix
A� that describe the dynamical evolution of the fraction m of
open units in the Ca channels, the intracellular concentration
of Ca ions close to the cell membrane, and the fraction of
Ca-gated K channels in each of their three closed states
�C0 ,C1 ,C2� and two open states �O2 ,O3�. In their seminal
work �12,13�, Hudspeth and Lewis �HL� experimentally
characterized the value of the various parameters that appear
in these equations.

The HL model reproduces qualitatively the decaying
membrane potential oscillations observed in current-clamp
experiments in which a current of constant amplitude I is
injected into the cell body �12,13�. As shown in Fig. 1, the
response of the membrane potential to a step current of am-
plitude I depends crucially on the value of the injected cur-
rent. For small injected currents, as illustrated in Fig. 1�a�,
the membrane potential exhibits an oscillatory decay to a
new constant value. For larger current values, as illustrated
in Fig. 1�b�, the membrane potential decays to a new state
that is oscillatory. This qualitative difference signals a tran-
sition between a regime in which the asymptotic state is a
fixed point and a regime in which the asymptotic state is a
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limit cycle. In the HL model, this transition occurs by a Hopf
bifurcation �9�.

A Hopf bifurcation occurs when a fixed point of a system
of ODE’s undergoes a change in stability in which a complex

conjugate pair of eigenvalues �, �̄ passes from the Re���
�0 to the Re����0 side of the imaginary axis in the com-
plex plane. Figure 2 shows the evolution of the eigenvalues
of the HL model linearized around its fixed point, as the
input current is increased from 0 and 100 pA. Note that three
of the eigenvalues are always real and negative, and one
complex conjugate pair remains in the Re����0 semispace.
The leading complex conjugate pair crosses the Re���=0
axis for I*�91.3 pA; this is the value of the input current at
which the fixed point becomes unstable, as determined by
fixing the parameters of the model at the experimentally
based estimates listed in Hudspeth and Lewis’s original pa-
per. That the HL model is, for physiologically reasonable
values of the parameters, poised near a Hopf bifurcation has
profound implications for the signal processing capabilities
of the modeled hair cell. Specifically, at the Hopf bifurcation
the system is compressively nonlinear, as it exhibits a large
amplification of small amplitude inputs and a smaller ampli-
fication of large amplitude inputs �10,11�. Moreover, the re-
sulting compression of the dynamic range is accompanied by

a sharp frequency tuning of the response to small amplitude
inputs and a broad tuning in the response to large amplitude
inputs �10,11�.

The dynamical behavior of the model is asymptotically
described by the amplitude of the mode associated with the
most unstable eigenvector, which is the one associated with
the complex conjugate pair of eigenvalues that cross the
Re���=0 axis at the Hopf bifurcation. Sufficiently close to
the bifurcation, the system can be generically described by a
normal form equation �14�

dA

dt
= �a + ib�A + �c + id��A�2A , �2�

which characterizes the dynamical evolution of the complex
amplitude A of the most unstable mode. In this equation, the
parameter a is a measure of the distance to the Hopf bifur-
cation at a=0; a is negative below the bifurcation and posi-
tive above. The parameter b is the frequency of the system at
the bifurcation, and the parameter d measures the shift in
preferred frequency as the amplitude of the solution in-
creases, as is readily seen by setting A=rei�t in Eq. �2� to
establish that r=� a

−c and �=b+dr2. The parameter c distin-
guishes between supercritical �c�0� and subcritical �c�0�
Hopf bifurcations.

We have carried out a standard nonlinear reduction of the
HL model to the normal form �see Appendix B�. In the re-
sulting normal form �26�, a is proportional to �I= �I− I*� / I*

and c is negative. This reduction thus establishes the super-
critical nature of the Hopf bifurcation in the HL model. For
this supercritical bifurcation, there is a transition from a
stable fixed point to a state in which the fixed point becomes
unstable and a stable limit cycle exists. Moreover, in the
supercritical case, the radius r of the limit cycle grows, with
distance past the bifurcation point, with the characteristic
scaling r���I.
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FIG. 1. �Color online� Numerical simulations of the response of
the membrane potential of a hair cell in the Hudspeth and Lewis
model �12,13�, to a constant current I injected at t=0.06. �a� I
=65 pA; �b� I=95 pA. A Hopf bifurcation occurs at I*�91.3 pA.
The other parameters of the HL model Eq. �15�, used in the simu-
lations, are given in Appendix A.
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FIG. 2. The eigenvalues of the Hudspeth and Lewis model Eq.
�15�, linearized about its static equilibrium state as described in
Appendix B, evolve in the complex plane as I is increased from
0 pA to 100 pA. Solid lines indicate the trajectory of the eigenval-
ues with increasing I. Other parameters of the equations are given in
Appendix A.
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In the current-clamp experiments conducted by Hudspeth
and Lewis �12,13�, the current injected into the cell was of
constant amplitude. In contrast, natural inputs to the cell are
due to a time-dependent, sound-induced mechanical dis-
placement of the hair bundle, which results in time-
dependent changes in the conductance through the transduc-
tion channels. Because the transduction channels are passive,
this time dependence can be incorporated into the HL model
through the leakage conductance term on the right-hand side
of Eq. �1�. In the case of a simple time-periodic conductance,
the reduction carried out in Appendix B suggests that for
command currents close to I* the most important contribu-
tion of the time-periodic forcing to the asymptotic dynamics
comes from the Fourier component that is closest to the reso-
nance frequency of the system. In the case of a weak periodic
signal with frequency close to the resonator’s frequency, the
time-periodic input can be represented as an additive contri-
bution to the amplitude equation, which then takes the form

dA

dt
= �a + ib�A + �c + id��A�2A + Fei�t. �3�

Due to the time-translation symmetry of the unforced case,
we can, without loss of generality, assume that F is real and
positive. We note that earlier investigations of Eq. �3� in the
context of amplification mechanisms in auditory hair cells
�10,11� assumed a real coefficient of the nonlinear term, i.e.,
they made the nongeneric assumption that d=0 such that the
preferred frequency of the nonlinear oscillator had no ampli-
tude dependence.

We next consider the tuning mechanism associated with
the mechanical deflection of the hair bundle. Experiments in
which a glass fiber was attached to the hair bundle and used
to mechanically stimulate the bundle at a specific frequency
showed that the hair bundles respond preferentially to stimuli
at their resonance frequency �6�. The motion of the hair
bundles has been shown to be sensitive to the amount of
calcium ion entering the transduction channels �15�. A model
for hair bundle motion due to calcium binding within the
stereocilia was proposed by Choe et al. �8�. In their model,
when transduction current enters the hair bundle Ca ions at-
tach themselves to the transduction channels at sites within
the stereocilia; this attachment causes an increase in tension,
which in turn causes the channel to close �8�. When the
transduction channel closes, the Ca ions detach themselves
from the binding sites and the channel returns to its regular
tension allowing the cycle to repeat itself. Choe et al. have
shown that, when the parameters of their model are specified
within physiologically reasonable ranges, the model is near a
Hopf bifurcation. Experimental evidence also indicates that
the relationship between stimulus magnitude and magnitude
of the hair bundle oscillations obeys the scaling that would
be expected for a system tuned near a Hopf bifurcation �16�,
lending support to our assumption that a model describing
the hair bundle dynamics is poised near a Hopf bifurcation.
Assuming this second mechanism is tuned sufficiently close
to a Hopf bifurcation, it too can be reduced to the normal
form �2� for a system near a Hopf bifurcation.

It only remains to consider first the manner in which the
two tuning mechanisms are coupled in the biological system,

and second how this coupling should be represented in the
reduced model. One clear source of coupling between the
two tuning mechanisms is through the transduction current.
The magnitude of the transduction current entering through
the stereocilia is directly related to the magnitude of dis-
placement of the stereocilia. This relationship between dis-
placement and the amount of current entering the cell has
been measured indirectly by measuring the change in the
receptor potential of the cell in response to stereocilia dis-
placements of different magnitudes �17�. Such experiments
indicate that, in absence of stimuli, a small amount of current
is flowing into the cell through the stereocilia. When the hair
bundle is deflected in the negative direction, away from the
tallest stereocilia, transduction channels close and the
amount of current flowing into the cell decreases. Similarly,
when the hair bundle is deflected in the positive direction,
the amount of current entering through the transduction
channels increases and eventually saturates. For small dis-
placements in the positive direction, the relationship between
the displacement of the hair bundle and the change in the
receptor potential is approximately linear �17�. As the ampli-
tude of the hair bundle oscillations increases due to stimula-
tion at the stereocilia’s resonance frequency, the amount of
current entering the cell body and providing a forcing to the
second electrical resonance mechanism increases. This
clearly provides a means of coupling from the stereocilia
tuning mechanism to the electrical resonance mechanism.

There is also evidence for coupling in the reverse direc-
tion, from the electrical resonance mechanism to the hair
bundle resonance mechanism, in that electrical stimulation of
the cell body has been shown to induce displacement of the
stereocilia �18–22�. The exact mechanism for coupling in
this direction is less clear. Experimental comparisons be-
tween current injected into the cell body and the resulting
displacement of the stereocilia indicate that the linear ap-
proximation is reasonable for small current injections �23�.
The presence of coupling in both directions raises the ques-
tion of whether there are actually two separate tuning mecha-
nisms or the stereocilia tuning mechanism is simply a mani-
festation of the electrical tuning mechanism. This question
was addressed in experiments in which the cell body was
voltage clamped to silence electrical resonance oscillations
allowing the motion of the stereocilia to be probed separately
�24�. These experiments demonstrate active motion of the
stereocilia even in the absence of the electrical resonance
mechanism. Electrical resonance experiments are often per-
formed by direct current injection, with transduction chan-
nels blocked, so the independence of the electrical resonance
mechanism from the active motion of the stereocilia was
never in question.

From the biological evidence, it is reasonable to assume
that the coupling between the two mechanisms is linear for
sufficiently small forcing. This leads us to a reduced model
consisting of two coupled amplitude equations of the form

dA1

dt
= �a1 + ib1�A1 + �c1 + id1��A1�2A1 + �1ei	1A2 + Fei�t,

�4�
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dA2

dt
= �a2 + ib2�A2 + �c2 + id2��A2�2A2 + �2ei	2A1. �5�

In this model, Eq. �4� represents the hair bundle resonance
mechanism which receives a sound-induced time-dependent
forcing ��F� as well as feedback from the electrical reso-
nance mechanism ��A2�. Equation �5� represents the electri-
cal resonance mechanism which receives a forcing propor-
tional to the displacement of the stereocilia. Note that we
allowed for a phase difference 	 j in each of the coupling
terms, with the corresponding parameters � j taken to be real
and non-negative. Moreover, we note that when both �1 and
�2 are nonzero, then the Hopf bifurcations that cause spon-
taneous oscillations in the unforced problem �F=0� will shift
away from aj =0. As detailed mathematically in Appendix B,
the model is valid for the case in which each system is tuned
close to the Hopf bifurcation ��aj� sufficiently small�, each
system is tuned near the resonance frequency �bj ���, and
the forcing and the coupling are weak �F, � j sufficiently
small�.

We have determined from Hudspeth and Lewis’s model
the numerical values of the coefficients a2, b2, c2, d2 of Eq.
�5� for the physiological parameters of HL. Models also exist
for the stereocilia mechanism, so it is possible that the same
coefficients of Eq. �4� could be determined based on these
models. Performing the second reduction, however, would
not be particularly useful in this paper because our analysis
requires that both systems be tuned close to the same fre-
quency. There are multiple ways to tune the physiological
models such that they yield vibrations at a required fre-
quency. Thus, without a very clear idea of the physiologi-
cally reasonable method to adjust the model parameters,
there is no way to determine a consistent result for the nu-
merical values of the coefficients in the amplitude equation
�4�. Nonetheless, many of our conclusions regarding scaling
laws hold provided that the Hopf bifurcations are supercriti-
cal �i.e., provided cj �0�, and that our fundamental modeling
assumptions are met.

III. ANALYSIS

A. Response-versus-forcing relationship

Our analysis of the reduced model �Eqs. �4� and �5�� fo-
cuses on frequency-locked solutions of the form Aj
=Rje

i��t+
j�, j=1,2, where Rj �0 and 
 j � �0,2�� are con-
stants. We wish to determine how the magnitude of the elec-
trical response, measured by R2, scales with the sound-
induced mechanical forcing amplitude, F. This scaling
depends on the proximity to the Hopf bifurcation, captured
by the linear damping coefficients aj �0 in Eqs. �4� and �5�.
It also depends on how closely tuned the natural frequencies,
bj, of the nonlinear oscillation mechanisms are to each other
and to the driving frequency, �.

Substituting Aj =Rje
i��t+
j� into Eqs. �4� and �5� yields the

following pair of complex-valued algebraic equations defin-
ing an implicit relationship between the real quantities F
and R2:

Fe−i
1 = − �a1 + i�b1 − ���R1 − �c1 + id1�R1
3

− �1R2ei�
2−
1+	1�, �6�

�2R1ei�
1−
2+	2� = − �a2 + i�b2 − ���R2 − �c2 + id2�R2
3.

�7�

We can solve Eq. �7� for R1 in terms of R2:

R1 = −
e−i�
1−
2+	2�

�2
��a2 + i�b2 − ���R2 + �c2 + id2�R2

3	 .

�8�

Here we can determine the phase difference �
1−
2� by the
requirement that R1 be real and nonnegative. Substituting
this expression into Eq. �6�, we find

F = ei�
2−	2��1R2 + 3R2
3 + 5R2

5 + 7R2
7 + 9R2

9� , �9�

where

1 
 − �1ei�	1+	2� +
1

�2
�a1 + i�b1 − ����a2 + i�b2 − ��� ,

3 

1

�2
�c2 + id2��a1 + i�b1 − ��� +

1

�2
3e−2i�
1−
2+	2��c1 + id1�

��a2 + i�b2 − ���3,

5 

3

�2
3e−2i�
1−
2+	2��a2 + i�b2 − ���2�c1 + id1��c2 + id2� ,

7 

3

�2
3e−2i�
1−
2+	2��a2 + i�b2 − ����c1 + id1��c2 + id2�2,

9 

1

�2
3e−2i�
1−
2+	2��c1 + id1��c2 + id2�3. �10�

Again, the phase 
2 in Eq. �9� is determined by the require-
ment that the forcing magnitude F be real and non-negative.
It immediately follows from the polynomial form of Eq. �9�
that the response R2 need not be a single-valued function of
F. It also follows that, with increasing forcing, there is a
transition from a linear regime R2�F for sufficiently small
forcing, to a regime where R2�F1/9 for larger values of F.
However, whether this transition occurs for small values of
F, for which the model �4� and �5� is valid, depends on both
the magnitude of the coupling coefficients � j and the magni-
tude of the linear coefficients aj + i�bj −��. In particular, if we
let �= �a2+ i�b2−���, then we expect the transition to the re-
gime R2�F1/9 will occur for small F provided that �a1
+ i�b1−����2

2 is at most O��3�, and �1�2
3 is at most O��4�.

The response vs forcing characteristics associated with
the model �4� and �5� are further explored in Fig. 3. For this
figure, we assume supercritical Hopf bifurcations associated
with the mechanical and electrical resonance mechanisms so
that cj �0 in the model equations. With an appropriate res-
caling of amplitudes Aj, we may then assume cj =−1 for both
j=1 and j=2. Our direct calculation of the normal form co-
efficients in Eq. �5� �see Appendix B�, from the HL model,
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yields d2 /c2�1.1. Thus in many of our numerical computa-
tions we set d2=−1.1. Finally, if we scale time by the dimen-
sioned forcing frequency, we may take �=1 in the model
equations. Figure 3 indicates stable frequency-locked solu-
tions as solid lines and unstable solutions by dotted lines.
The linear stability of the frequency-locked solutions is de-
termined by substituting the ansatz Aj =Rje

i��t+
j��1+zj�t��
into Eqs. �4� and �5� and then linearizing about zj =0. We
then find that the perturbations zj satisfy the following sys-
tem of linear differential equations:

�
ż1

ż̄1

ż2

ż̄2

� =�
M1 M2 M3 0

M̄2 M̄1 0 M̄3

M6 0 M4 M5

0 M̄6 M̄5 M̄4

��z1

z̄1

z2

z̄2

� , �11�

where z̄1 denotes the complex conjugate of z1, etc., and

M1 
 a1 + ib1 − i� + 2�c1 + id1�R1
2,

M2 
 �c1 + id1�R1
2,

M3 
 �1
R2

R1
ei�
2−
1+	1�,

M4 
 a2 + ib2 − i� + 2�c2 + id2�R2
2,

M5 
 �c2 + id2�R2
2,

M6 
 �2
R1

R2
ei�
1−
2+	2�. �12�

The solution Aj =Rje
i��t+i
j�, with Rj and 
 j satisfying Eqs.

�6� and �7�, is stable if the eigenvalues of the matrix associ-
ated with the linearized problem �11� all have negative real
part.

Figure 3�a� demonstrates the predicted transition from lin-
ear response to nonlinear response with R2�F1/9. Figure 3�b�
shows that as the damping in the system increases, larger
forcings are necessary to reach this nonlinear regime. More-

−6 −5 −4 −3 −2 −1 0
−2.5

−2

−1.5

−1

−0.5

0

log
10

(F)

lo
g 10

(R
2)

Slope=1/9

Slope=1

−8 −6 −4 −2 0
−2.5

−2

−1.5

−1

−0.5

0

log
10

(F)

lo
g 10

(R
2)

Increasing b
2

−6 −5 −4 −3 −2 −1 0
−2.5

−2

−1.5

−1

−0.5

0

log
10

(F)

lo
g 10

(R
2)

Increasing Damping

−4 −3 −2 −1 0
−2.5

−2

−1.5

−1

−0.5

0

log
10

(F)

lo
g 10

(R
2)

Increasing γ
1

(a) (c)

(b) (d)

FIG. 3. �Color online� Sample log-log plots of response �R2� versus forcing �F� from Eqs. �9� and �10�, for the system with c1=c2=
−1 and with varying damping, coupling, and detuning magnitudes. Solid �dotted� lines represent �un�stable frequency-locked solutions. �a�
Transition from linear response �R2�F� to nonlinear response with R�F1/9; dashed lines, for comparison, have slopes 1 and 1/9 as
indicated. Parameters set to a1=−0.02, a2=−0.001, b1−�=0, b2−�=0.01, d1=−2, d2=−1.1, �1=0, �2=0.1, and 	2=0.64�. �b� Response
curves obtained with linear damping parameters �a1 ,a2�= �−0.0002,−0.0001�, �−0.0002,−0.1�, �−0.2,−0.1�; other parameters set at b1−�
=0.01, b2−�=0.02, d1=−6, d2=−4, �1=0, �2=0.1, and 	2=0.64�. �c� Response curves obtained with detuning b2−�=0.001,0.01,0.1;
other parameters set at b1−�=0.002, a1=−0.001, a2=−0.002, d1=−2, d2=−1.1, �1=0, �2=0.1, and 	2=0.64�. �d� Response curves
obtained with different backward coupling magnitudes of �1=0,0.1,0.2,0.3,0.4; other parameters set at a1=−0.1, a2=−0.2, b1−�=0.02,
b2−�=0.01, d1=−1, d2=−1.1, �2=0.1, 	1=�, 	2=0.
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over, this plot demonstrates the possibility of hysteresis
which can occur when bj-� and dj have opposite signs, pro-
vided the damping is not too great. For the rightmost curve,
the damping is large and neither tuning mechanism operates
in a hysteretic regime. The middle curve demonstrates that,
for the parameter values used in the figure, decreasing the
damping associated with one tuning mechanism leads to a
region of hysterisis. The leftmost curve shows that when the
damping is reduced below a critical value for each mecha-
nism, two regions of hysteresis are observed. Figure 3�c�
shows how the transition from linear to 1/9 scaling moves to
larger forcing when the detuning b2-� is increased; note that
in this plot a scaling of R2�F1/3 is also evident over an
intermediate range of forcings. Changes in the magnitude of
the feedback coefficient �1 can either enhance or degrade the
response, R2, depending upon the coupling phases 	1 and 	2.
Figure 3�d� shows an example of the change in the response
versus forcing relationship as the feedback coefficient �1 is
increased.

B. Uniqueness and stability: unidirectional coupling

The problem of determining the uniqueness and stability
of solutions is greatly simplified in the case of unidirectional
coupling between the mechanical and electrical resonators.
In this section we focus our further analysis on the case
where the feedback from the electrical resonator to the ste-
reocilia can be neglected, i.e., we focus on the case in which
�1=0 in Eq. �4�.

In this unidirectional-coupling case, M3=0 in the stability
matrix �11�, and the linear stability problem simplifies to one
of determining the eigenvalues associated with the 2�2
blocks on the diagonal. For instance, if we let �1 and �2 be

the eigenvalues associated with the �ż1 , ż̄1� equations, we find

�1 + �2 = M1 + M̄1 = 2�a1 + 2c1R1
2� ,

�1�2 = �M1�2 − �M2�2 = a1
2 + �b1 − ��2 + 4�a1c1 + �b1

− ��d1�R1
2 + 3�c1

2 + d1
2�R1

4. �13�

Similar equations for the remaining two eigenvalues, associ-

ated with the �ż2ż̄2� equations, hold: they are obtained from
Eq. �13� by interchanging the 1 and 2 subscripts on its right-
hand side. In the case of supercritical Hopf bifurcations �cj

�0�, and damping of spontaneous oscillations �aj �0�, the
frequency-locked solutions are stable provided �M1�2− �M2�2
�0 and �M4�2− �M5�2�0. While these conditions hold for
sufficiently small and sufficiently large amplitudes R1 and
R2, they may be violated in the intermediate regime if ajcj
+ �bj −��dj �0 for either j=1 or j=2. Since we are interested
in the case that aj and cj are both negative, a necessary
condition for a frequency-locked solution to lose stability,
with increase in forcing F, is that bj −� and dj must have
opposite signs. To gain some insight into this criterion, it is
useful to note that the preferred frequencies, b1+d1R1

2 and
b2+d2R2

2, of each tuning mechanism, in absence of forcing,
are dependent upon response magnitude. If the natural fre-
quency of the cell shifts away from the forcing frequency

with increasing response ��bj −��dj �0�, then ajcj + �bj

−��dj �0 and the entrained solution is always stable and
unique. Instabilities, and their associated hysteresis in the
response vs forcing curves, can only occur in the unidirec-
tionally coupled case if the preferred frequency of at least
one of the tuning mechanisms shifts towards the forcing fre-
quency with increasing response amplitude ��bj −��dj �0�.
In this case, the system may jump from a small amplitude
response to a larger amplitude one with an increase in the
forcing. This follows from the observation that the instabili-
ties, if they occur, come in pairs and correspond to saddle-
node bifurcations along the solution branches Rj�F�; see Fig.
3�b�, for example. The necessary and sufficient condition for
a pair of saddle-node bifurcations to occur is

ajcj + �bj − ��dj � −�3

4
�aj

2 + �bj − ��2��cj
2 + dj

2� ,

�14�

for j=1 and/or j=2. Note that the prediction that hysteresis
can occur for larger detunings is a direct result of the depen-
dence of the cell’s preferred frequency on response ampli-
tude, an effect which was neglected in previous studies for
which the imaginary part of the nonlinear coefficient �dj�
was neglected �10,11�.

IV. RESULTS AND DISCUSSION

We expect that if each independent amplification mecha-
nism is well tuned to the forcing frequency ��bj −���1� and
the damping is small the coupled system will have a greater
response than a system with only a single tuning mechanism.
From Eq. �10� we see that the leading coefficients  j for j
=1, . . . ,7 in Eq. �9� may decrease in magnitude, compared to
the highest order coefficient 9, as the forcing frequency �
approaches the natural frequencies of the tuning mechanisms
bj. Figure 4 demonstrates that the amplification

R2

F is greatest
near the resonant frequency. It also makes a comparison be-
tween the tuning curves for the coupled system and the sys-
tem with one amplification mechanism suppressed. For the
latter case we solve Eq. �6� for R1��� with R2=0, and then

plot �2
R1

F as a function of frequency, for different values of
F; the coupling �2 is included so that the same relationship
between the hair bundle displacement and the magnitude of
the transduction current is assumed in both the single and the
coupled tuning models. Each curve in the diagram shows the
variation in response with forcing frequency, holding the sig-
nal amplitude F constant. Figure 4�a� shows that the broadest
tuning curve occurs for the loudest sounds. As the magnitude
of the sound decreases, several effects occur: the amplifica-
tion increases, the frequency tuning becomes sharper, and
because dj�0 the preferred frequency shifts as the magni-
tude of the forcing increases. We used dj �0 for all of the
plots, so the preferred frequencies of the oscillation mecha-
nisms decrease as their amplitude increases. This phenom-
enon in turn leads to a region of bistability for driving fre-
quencies ��bj as described in Sec. III. This bistability is the
source of the prominent shoulder in the tuning curves that
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appears for ��1. A comparison of the height of the peaks in
Figs. 4�a� and 4�b�, reveals that amplification of on-
resonance forcing is enhanced in the coupled system. Also,
the frequency tuning curves are sharper and display a smaller
shift in frequency with changing forcing amplitude in the

coupled system. Each of these properties would be a poten-
tial advantage of the coupled system. If the preferred fre-
quencies of the two mechanisms are not sufficiently well-
tuned to each other, then the single resonance peak in Fig.
4�b� may split into two peaks as seen in Fig. 4�c�.

The algebraic relationship between the magnitude of the
forcing and the magnitude of the response of the electrical
resonance mechanism given in Eq. �9� allows for experimen-
tally testable predictions to be made. In an idealized situa-
tion, for which each mechanism is perfectly tuned to the
forcing frequency �b1=b2=�� and situated at the Hopf bifur-
cation �a1=a2=0�, Eq. �9� indicates that the response of the
electrical resonance mechanism is proportional to F1/9, com-
pared with R�F1/3 for a system with a single tuning mecha-
nism �10,11�. �If the two mechanisms are unidirectionally
coupled, the output of the mechanical resonance mechanism
becomes the forcing for the electrical resonance mechanism,
so the scaling R2� �F1/3�1/3 follows simply.� The exponent �
of this response-versus-forcing relationship R2�F� provides
a measure of the quality of the amplification; small ampli-
tude signals are amplified to a greater extent for smaller val-
ues of �. The smaller exponent of �=1/9, associated with the
well-tuned coupled model, can provide more powerful am-
plification �R2 /F� than a system with an isolated tuning
mechanism. In more realistic situations for which some
damping and/or detuning is present �aj �0, bj���, Eq. �9�
predicts a transition from a regime in which R2�F for
smaller forcings and a regime in which R2�F1/9 for
sufficiently large signals. By measuring the response of the
electrical resonance mechanism for different amplitudes of
signal, it is possible to estimate �, although, depending
upon which portion of the response-versus-forcing curve
is sampled, different estimates for � might be obtained
experimentally.

In comparing the scaling predictions of our model to ex-
periment, we turn to auditory nerve data. Changes in the
membrane potential of the hair cell body result in the release
of neurotransmitters at the hair cell-auditory nerve synapse.
Larger depolarizations result in larger amounts of neurotrans-
mitter release and thus a faster firing rate in the auditory
nerve. There is biological evidence that, even for nonreso-
nant stimuli, the firing rate at the auditory nerve is a nonlin-
ear function of the sound stimulus. However, this nonlinear-
ity, which occurs either due to synaptic effects or the
relationship between hair bundle displacement and dc recep-
tor potential, is factored out during the data analysis, allow-
ing an estimate of � to be made �see the discussion in Refs.
�25,26��.

Numerous experiments have been performed in order to
estimate the exponent � of the response-versus-forcing rela-
tionship from experimental auditory nerve recordings. Table
I summarizes some recent measurements of � taken from
experiments in both mammals and nonmammals. In each
case, � is commonly measured to be smaller than 1/3. In
mammals, as in nonmammals, two different mechanisms
have been proposed to explain amplification, the first due to
active motion of outer hair cells �27,28�, and the second due
to the active motion of the hair bundles �6,29–31�. While our
results do not directly apply to mammalian data, as the cou-
pling of the two active elements may be more complicated
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FIG. 4. �Color online� Amplification vs frequency plots
from Eqs. �8� and �9�. Amplification was taken to be �2R1 /F in the
single tuning mechanism case �a�, and R2 /F in the double-tuning,
unidirectionally coupled cases �b�, �c�. Each curve represents
a constant forcing amplitude taken from the set F
=10−3 ,10−2.5 ,10−2.0

¯10−0.5 �a� a1=−0.01, b1=1, c1=−1, and d1

=−2, �2=0.01, 	2=0.64�. �b� a1=−0.01, a2=−0.02, b1=b2=1, c1

=c2=−1, d1=−2, d2=−1.1, �1=0, �2=0.01, 	2=0.64�.
�c� a1=−0.01, a2=−0.02, b1=1, b2=1.2, c1=c2=−1, d1=−2,
d2=−1.1, �1=0, �2=0.01, 	2=0.64�.
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�32�, it is noteworthy that compression estimates in mam-
mals are similar to those in nonmammals.

The observation of � values smaller than 1/3 is interest-
ing in that it indicates that the auditory system achieves
greater compressions than would be expected from a system
with a single tuning mechanism associated with a Hopf bi-
furcation. Experimental measurements of the forcing-versus-
displacement relationship for individual hair bundles satisfy
the R�F1/3 scaling law expected for a system tuned near a
generic Hopf bifurcation �10,11�. Because effects at the syn-
apse are removed during the data analysis, any additional
compression must occur due to the interaction with the elec-
trical resonance mechanism.

Some models have explained this increased compression
by assuming within their model, that the leading nonlinear
terms are higher than cubic �e.g., Ref. �37��. We propose that
a more physically motivated way of achieving higher order
compression would be through the coupling of two systems
tuned near a Hopf bifurcation. With the exception of three
data points, all � values in Köppl and Yates’ owl data are
greater than 0.1, with the majority of measurements lying
between 0.1 and 0.3 �37�. So their data is not inconsistent
with what would be expected from a coupled system, which
at best produces a � value of 1 /9. If it is the case that the
observed enhanced amplification occurs due to coupling be-
tween the two tuning mechanisms, this is an interesting re-
sult, because our analysis indicates that the tuning mecha-
nisms must maintain themselves close to the bifurcation
point and close to the same frequency for maximum ampli-
fication to be observed. It would be interesting both from a
biological and mathematical perspective to understand how
such fine tuning is achieved. Some studies have suggested
that stochastic effects may help the system adjust itself to the
bifurcation point �38,39�. Another has suggested that with
certain assumptions about the evolution of the bifurcation
parameter, self-tuning occurs automatically �40�. Biologi-
cally, it has been suggested that adjustments in the tension of
the hair bundle due to an actin myosin mechanism may act to
keep the hair bundle properly tuned �24,41�.

Another prediction of the model is that either of the two
tuning mechanisms may exhibit hysteresis. It is worth noting
that this feature arises as a direct result of the shift in the

natural frequency of the tuning mechanisms with increasing
response, a feature that was not taken into account in previ-
ous models. It would be interesting if such bistability could
be observed in experimental auditory nerve data.
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APPENDIX A: MODEL PROPOSED BY HUDSPETH AND
LEWIS

The following seven-dimensional model of a bullfrog sac-
cular hair cell was proposed by Hudspeth and Lewis �12,13�.
It is a Hodgkin and Huxley type model with three ion chan-
nels included in the model, a voltage-gated calcium ion
channel, a calcium-gated potassium ion channel, and a pas-
sive leakage channel. The passive leakage channel is always
open. The calcium ion channel opens in response to depolar-
ization. The gating of the potassium ion channel requires
both the binding of calcium to the interior of the channel and
an adequate depolarization. The first equation models the
rate of change of the membrane potential �Vm� due to cur-
rents entering the cell through both the transduction chan-
nels, the calcium ion channels, and the calcium-gated potas-
sium channels. The other six equations account for changes
in the concentration of internal calcium �Ca� close to the
membrane, the fraction of open calcium ion channels �m�,
and the fraction of potassium ion channels in each of three
closed configurations �C0 ,C1 ,C2� and two open configura-
tions �O2 ,O3�.

Cm
dVm

dt
= − gCam

3�Vm − ECa� − gK�Ca��O2 + O3��Vm − EK�

− gL�Vm − EL� + I ,

dCa

dt
= −

UgCam
3�Vm − ECa�

zFvcell�
− KsCa,

dm

dt
= ��Vm��1 − m� − �Vm�m ,

dC0

dt
= k−1C1 − k1CaC0,

dC1

dt
= k1CaC0 + k−2C2 − �k−1 + k2Ca�C1,

dC2

dt
= k2CaC1 + C0e−Vm/VaaO2 − �k−2 + �C�C2,

dO2

dt
= �CC2 + k−3O3 − �C0e−Vm/Vaa + k3Ca�O2,

TABLE I. Experimental estimates of �.

Nonmammals

Owls: between 0.05 and 0.55, with the majority of data points
lying between 0.1 and 0.3 �33�.
Pigeons: between 0.22 and 0.6 �34�.

Mammals

Guinea pigs: between 0.2 and 0.25 �25�.
Guinea pigs: approximately 0.6 for two low-frequency �1.8 and
2.7 kHz.� fibers and approximately 0.1 for medium- �5.5–6.3
kHz� and high-frequency �20.5–23 kHz� fibers.

For fibers tuned above 4 kHz, the mean exponent was 0.13 with a
standard deviation of 0.04 �35�.
Chinchilla: direct basilar membrane measurements yield � values
between 0.2 and 0.7 �36�.
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O3 = 1 − C0 − C1 − C2 − O2, �A1�

where

�Vm� = 0e−�Vm+V0�/VA + KA,

��Vm� = �0e�Vm+V0�/VB + KB,

k1 =
k−1

K10e
�1zFVm/RT ,

k2 =
k−2

K20e
�2zFVm/RT ,

k3 =
k−3

K30e
�3zFVm/RT .

The amount of current that is injected into the cell I, is used
as the control parameter. All other parameters are set to the
value used in Hudspeth and Lewis’s original paper:
gCa=4.14�10−9 S, ECa=0.1 V, gKCa

=16.8�10−9 S, EK

=−0.08 V, EL=−0.03 V, gL=10−9 S, Cm=15�10−12 F, U
=0.02, z=2, F=96485.309 C/mol, vcell=1.25�10−12L, �
=3.4�10−5, Ks=2800 s−1, �0=0.97 s−1, V0=0.07 V, VB
=0.00617 V, KB=940 s−1, KA=510 s−1, VA=0.00801 V, 0

=22800 s−1, C0=450 s−1, T=295 K, R=8.314510 J
mol K , �1

=0.2, �2=0, �3=0.2, �C=1000 s−1, k−1=300 s−1, k−2
=5000 s−1, k−3=1500 s−1, K10=6�10−6 M, K20=45
�10−6 M, K30=20�10−6 M, and Vaa=0.033 V.

APPENDIX B

Here we present some details of the reduction of the Hud-
speth and Lewis model �15� to the normal form �3�. Our
analysis is valid in a neighborhood of the equilibrium solu-
tion �Vm

* ,Ca* ,m* ,C0
* ,C1

* ,C2
* ,O2

*� for command currents I
sufficiently close to the critical current I*. In particular, we
find that Vm

* �−0.04888 V, Ca*�1.623�10−5, m*�0.3115,
C0

*�0.08429, C1
*�0.4919, C2

*�0.1774, O2
*�0.08960, and

O3
*�0.1568, for I= I*�91.3�10−12 A.
We first translate the fixed point to the origin and nondi-

mensionalize variables as follows: Vm=Vm
* �1+X1�, Ca

=Ca*�1+X2�, m=m*�1+X3�, C0=C0
*�1+X4�, C1=C1

*�1+X5�,
C2=C2

*�1+X6�, O2=O2
*�1+X7�. Moreover, we let I= I*�1

+�I�, where �I measures a small deviation from the critical
command current associated with the Hopf bifurcation, and
allow for a small periodic forcing through the leakage cur-
rent conductance by setting gL=gL

*�1+�gL�t��. Here �gL�t�
=�gL�t+T� captures the purely oscillatory part of gL, while
gL

* is the mean conductance; we set gL
* =10−9 S, as in the

original Hudspeth and Lewis model. The period T is related
to the forcing frequency � in the usual fashion T
2� /�.
The governing equations, expressed in terms of the dimen-
sionless vector-valued variable X= �X1 ,X2 , . . . ,X7� and the
parameters �I and �gL�t�, are written

dX

dt
= H�X;�I,�gL�t�� . �B1�

The Hopf bifurcation occurs at X=0, �I=0 for �gL�t�=0, so
H�0 ;0 ,0�=0 and the Jacobian matrix D ·H�0 ;0 ,0� has a pair
of purely imaginary eigenvalues ±i�0, �0�938 s−1, with as-

sociated complex eigenvectors U , Ū. The remaining eigen-
values �1 , . . . ,�5 �where �5=�4� all have real parts less than
−2000 s−1 �see Fig. 2�, and are associated with eigenvectors

V1 , . . . ,V5 �where, again, V5= V̄4�. Our convention is to nor-
malize all eigenvectors to 1. Finally, we diagonalize the lin-
earized problem at the bifurcation point by letting X�t�
=z�t�U+ z̄�t�Ū+y1�t�V1+y2�t�V2+ . . .y5�t�V5, and write the
governing equations in terms of the new variables z , z̄ ,y

�y1 , . . . ,y5� as follows:

dz

dt
= i�0z + Nz�z, z̄,y;�I,�gL�t�� ,

dz̄

dt
= − i�0z̄ + N̄z�z, z̄,y;�I,�gL�t�� ,

dy

dt
= �y + Ny�z, z̄,y;�I,�gL�t�� . �B2�

Here � is a diagonal matrix, with eigenvalues �1 , . . . ,�5 on
the diagonal, and Nz and Ny contain the nonlinear terms in z,
z̄ and y, as well as all terms involving the parameters �I and
�gL�t�.

We now use perturbation theory to derive the normal form
of the bifurcation problem. Toward this end we introduce a
small book-keeping parameter � �����1� that is a measure of
proximity to the Hopf bifurcation. Specifically, we let �I
=�2� and seek small amplitude solutions of the form

z�t� = �z1�t,T� + �2z2�t,T� + �3z3�t,T� + ¯ ,

y�t� = �2y2�t,T� + �3y3�t,T� + ¯ , �B3�

where T=�2t is a slow time variable that captures the slow
decay to the oscillatory solutions associated with a Hopf bi-
furcation. Finally, we make some additional assumptions
about the magnitude and frequency of the applied periodic
forcing by letting �gL�t�=�3f�t� and �0=�+�2�̂, i.e., we
consider small nearly resonant periodic forcing.

Inserting these ansatz in Eq. �B2�, and expanding in pow-
ers of �, we recover at O���

�z1

�t
= i�z1 �B4�

with solution

z1 = Â�T�ei�t. �B5�

Here the complex amplitude Â�T� satisfies an equation to be
determined at higher order.

At O��2�, we find
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�z2

�t
= i�z2 + z� + �zz1

2 + �zz̄1
2 + �z�z1�2, �B6�

where z�−756+52i, �z�−86+2i, �z�20−20i, �z�−80
−64i, as well as similar equations for the fast-time evolution
of y2. The general solution of Eq. �B6� is

z2�t,T� =
i�z� + �z�Â�2�

�
−

i�zÂ
2

�
e2i�t +

i�zÂ
¯ 2

3�
e−2i�t

+ B̂�T�ei�t. �B7�

Here B̂�T� is arbitrary and we set it to zero in the remainder
of our computations, since, without loss of generality, it may
be absorbed by the O��� solution �B5�. The equations for
each of the components of y2, which have a similar structure
to Eq. �B6�, yield solutions of the same form as Eq. �B7�,
although with B̂�T�ei�t replaced by rapidly decaying solu-
tions Cj�T�e�jt of their associated homogeneous problems.

Finally, at O��3�, we find

�z3

�t
= i�z3 + i�̂Â −

�Â

�T
+ �45 + 97i��Â − �46 + 49i��Â�2Â

− �156 − 11i� f̂1�ei�t + ¯ . �B8�

Here the ellipsis indicates additional terms proportional to

e−i�t and e±3i�t, and f̂1 is the coefficient of the ei�t term in the
Fourier expansion of the periodic forcing function f�t�. We
have written explicitly only those terms on the right-hand-
side that are resonant with the solution of the linear homo-
geneous problem. In order for our perturbation expansion to
remain valid, this resonant forcing term, which leads to un-
bounded growth, must vanish. In this fashion we obtain the

following evolution equation for Â�T�:

�Â

�T
= i�̂Â + �45 + 97i��Â − �46 + 49i��Â�2Â − �156 − 11i� f̂1.

�B9�

Finally, we rewrite the equation in the normal form �3� by
letting

A�t� = �Â��2t�ei�t+i�, �B10�

where the phase � is specified below. We then find

dA

dt
= �a + ib�A + �c + id��A�2A + Fei�t, �B11�

where

a + ib = 45�I + i��0 + 97�I� ,

c + id = − �46 + 49i� ,

F = − �156 − 11i��ĝL,1ei�. �B12�

Here �ĝL,1 is the coefficient of the ei�t term in the Fourier
expansion of �gL, and we choose � so that F is real and
positive, i.e., so that

F = ��156 − 11i��ĝL,1� . �B13�

Next, we will consider how two systems tuned near a
Hopf bifurcation would interact. Under the assumption that
the coupling between the two systems is weak and linear, it
is straightforward to show that the coupled system can be
described by the following set of coupled amplitude equa-
tions:

dA1

dt
= �a1 + b1i�A1 + �c1 + d1i��A1�2A1 + �1ei	1A2 + Fei�t,

�B14�

dA2

dt
= �a2 + b2i�A2 + �c2 + d2i��A2�2A2 + �2ei	2A2,

�B15�

where the coefficients of the coupling terms �1 and �2, are
taken to be of order �2 indicating weak coupling between the
two systems. Additionally, for coupling between the two sys-
tems to occur, it is necessary to assume that the resonance
frequency of each system is within �2 of the forcing fre-
quency �. As with the previous amplitude equations, the
resonant forcing amplitude F is assumed to be small on the
order of �3 and each system is assumed to be tuned suffi-
ciently close to the Hopf bifurcation, requiring that both a1
and a2 be of order �2.
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